Diesel exhaust particles induce matrix metalloprotease-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism.
نویسندگان
چکیده
Chronic exposure to particulate air pollution is associated with lung function impairment. To determine the molecular mechanism(s) of this phenomenon, we investigated, in an alveolar human epithelial cell line (A549), whether diesel exhaust particles (DEPs), a main component of particulate air pollution, modulates the expression and activity of the matrix metalloprotease (MMP)-1, a collagenase involved in alveolar wall degradation. Interaction of DEPs with cigarette smoke, which also produces structural and functional lung alterations, was also investigated. A noncytotoxic concentration of DEPs induced an increase in MMP-1 mRNA and protein expression and activity in A549 cells without modifying the expression of the MMP inhibitors TIMP-1 and -2. This effect was not potentiated when cells were coexposed to noncytotoxic concentrations of cigarette smoke condensate. DEP-induced MMP-1 was associated with increased ERK 1/2 phosphorylation and upregulation of expression and activity of the NADPH oxidase analog NOX4. Cell transfection with a NOX4 small interfering RNA prevented these phenomena, showing the critical role of a NOX4 ERK 1/2 pathway in DEP-induced MMP-1 expression and activity. Similar results to those observed in A549 cells were obtained in another human lung epithelial cell line, NCI-H292. Furthermore, experiments in mice intratracheally instilled with DEPs confirmed the in vitro findings, showing the induction of NOX4 and MMP-1 protein expression in alveolar epithelial cells. We conclude that alveolar alterations secondary to MMP-1 induction could explain lung function impairment associated with exposure to particulate pollution.
منابع مشابه
TRPV4-Mediated Calcium Influx into Human Bronchial Epithelia upon Exposure to Diesel Exhaust Particles
BACKGROUND Human respiratory epithelia function in airway mucociliary clearance and barrier function and have recently been implicated in sensory functions. OBJECTIVE We investigated a link between chronic obstructive pulmonary disease (COPD) pathogenesis and molecular mechanisms underlying Ca2+ influx into human airway epithelia elicited by diesel exhaust particles (DEP). METHODS AND RESUL...
متن کاملDiesel exhaust particles upregulate eotaxin gene expression in human bronchial epithelial cells via nuclear factor-kappa B-dependent pathway.
Fine particles derived from diesel engines, diesel exhaust particles (DEP), have been shown to augment gene expression of several inflammatory cytokines in human airway epithelial cells in vitro. However, it remains unclear whether or not DEP have any effect on the expression and production of eotaxin, an important chemokine involved in eosinophil recruitment into the airways. We studied the ef...
متن کاملDiesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation.
Increased exposure to air pollutants such as diesel exhaust particles (DEP) has been proposed as one mechanism to explain the rise in allergic disorders. However, the immunologic mechanisms by which DEP enhance allergic sensitization and asthma remain unclear. We hypothesized that DEP act as an adjuvant for immature dendritic cell (DC) maturation via its effect on airway epithelial cell-derived...
متن کاملIGF-1 increases the expression of fibronectin by Nox4-dependent Akt phosphorylation
20 21 Extracellular matrix accumulation contributes to the progression of chronic kidney disease. 22 Many growth factors including insulin-like growth factor-1 (IGF-1) enhance matrix protein 23 accumulation. Proximal tubular epithelial cells (PTCs) synthesize matrix proteins. NADPH 24 oxidases are major sources of reactive oxygen species (ROS), important signaling 25 molecules that mediate biol...
متن کاملA key role for NOX4 in epithelial cell death during development of lung fibrosis.
UNLABELLED The pathogenesis of pulmonary fibrosis is linked to oxidative stress, possibly generated by the reactive oxygen species (ROS) generating NADPH oxidase NOX4. Epithelial cell death is a crucial early step in the development of the disease, followed only later by the fibrotic stage. We demonstrate that in lungs of patients with idiopathic lung fibrosis, there is strong expression of NOX...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 293 1 شماره
صفحات -
تاریخ انتشار 2007